MAGNETIC SUSCEPTIBILITY AND FUSION DATA FOR SOME VOLCANIC ROCKS FROM SOUTHWESTERN NEW MEXICO

Author(s):  
JOSEPH G. WARGO
2018 ◽  
Vol 13 (4-5) ◽  
pp. 36-51
Author(s):  
J. V. Frolova ◽  
V. V. Ladygin ◽  
E. M. Spiridonov ◽  
G. N. Ovsyannikov

The article considers the petrogenetic features of the volcanogenic rocks of the Middle Jurassic age of the Mountain Crimea and analyzes their influence on physical (density, porosity, water absorption, and magnetic susceptibility) and physical-mechanical properties (strength, modulus of elasticity, and Poisson's ratio). Among volcanogenic strata there are subvolcanic, effusive and volcanogenic-clastic rocks. All volcanic rocks were altered under the influence of the regional low-grade metamorphism of the zeolite and prehnite-pumpellyite facies, which resulted in a greenstone appearance. Among the secondary mineral the most common are albite, chlorite, quartz, adularia, sericite, calcite, pumpellyite, prenite, zeolites, epidote, sphene, and clay minerals. It is shown that low-grade metamorphism is characterized by heterogenious transformations: there are both slightly modified, practically fresh differences, and fully altered rocks. Tuffs are usually altered to a greater extent than effusive and subvolcanic rocks. In general, effusive and volcanogenic-clastic rocks differ markedly in their physicalmechanical properties, which is due to the peculiarities of their formation: the former are substantially more dense and stronger, less porous and compressible. However, these differences are leveled as a result of intensive changes in mineral composition and porosity in the process of low-grade metamorphism. The most characteristic values of metavolcanite properties were revealed. It is shown that among all studied parameters, the magnetic susceptibility most clearly correlates with the degree of rocks alteration.


2001 ◽  
Author(s):  
Michael J. Kunk ◽  
Jeffrey A. Winick ◽  
Josette O. Stanley

Author(s):  
W. A. BASSETT ◽  
P. F. KERR ◽  
O. A. SCHAEFFER ◽  
R. W. STOENNER
Keyword(s):  

2018 ◽  
Vol 6 (4) ◽  
pp. T937-T949
Author(s):  
Mo Li ◽  
Xiaobing Zhou ◽  
Christopher H. Gammons ◽  
Mohamed Khalil ◽  
Marvin Speece

The Gallinas Mountains, located at the junction of Lincoln and Torrance Counties, New Mexico, USA, are a series of alkaline volcanic rocks intruded into Permian sedimentary rocks. The Gallinas Mountains area hosts fluorite and copper as veins containing bastnäsite, whereas deposits of iron skarns and iron replacement are in the area as well. These deposits produce iron. In this study, the multispectral band-ratio method is used for surface mineral recognition, whereas 2D subsurface structure inversion modeling was applied to explore the depth extent of the magnetic ore distribution from aeromagnetic data. Bastnäsite has higher magnetic susceptibility (0.009 SI) than the host rocks and surrounding sedimentary rock. The bastnäsite and iron oxides (magnetite + hematite) can contribute to a positive aeromagnetic anomaly. Results indicate that (1) the positive magnetic anomaly observed at Gallinas Mountains area can be accounted for by a mixture of bastnäsite and iron oxides at a depth of approximately 400 m and a thickness of approximately 13–15 m. The surface of this area is dominated by the hydrothermal alteration associated with iron oxides over the trachyte intrusions as detected by Landsat 8 band-ratio imaging.


Sign in / Sign up

Export Citation Format

Share Document